Welcome back

to CS429H!

Best Ed meme of the week:

Questions on lecture content?
Or about cats?

Quiz everyone say YAY!

Poll

int fd =
open(“feedback.txt”,0_RDONLY) ;

How was the quiz?

A.

B.
C.
D

easy

mostly fine

mostly fine, but not enough time
too hard, but finished mostly in
time

too hard and not enough time
too hard regardless of time

Stress

e 429H is not an easy class

o Lots of new materials

o Unfamiliar programming environments

o Fast, often relentless pace
e Strugglingin this course is normal

o There will be times you won’t know the answer of the solution

o Thisis expected—we want we everyone to succeed, but the only way we can helpis if you ask for it
e If you find yourself overly overwhelmed or spending more time on this class than

you think you should be, please reach out to Dr. Gheith or the TAs

o Wecan help out as far as the class goes
o We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

P1 Postmortem

e Grades will be released by next discussion (putting this here to hold us
accountable Imao)

e Correctness
o Good job!
o If youwant usto grade alate commit, please make a regrade request

e Testcases
o Stress tests - ok, but you don't need to make then 200k lines...
e Code quality
o Very good! Keep in mind that for p2 we will start checking for memory leaks

e Reports
o Awesome!

Slides I stole from last year

what does this code output? 1/8

#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person create_person(int age) {
Person p = {age};
return p;

}

int main() {
int myAge = 22;
Person p = create_person(myAge);
printf("Age: %d\n", p.age);

Slides I stole from last year

what does this code output? 2/8

#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person *create_person(int age) {
Person p = {age};
return &p;

}

int main() {
int myAge 22;
Person *p = create_person(myAge);
printf("Age: %d\n", p->age);

Slides I stole from last year

what does this code output? 3/8

#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person create_person(int *age) {
Person p = {*age};
return p;

}

int main() {
int myAge = 22;
Person p = create_person(&myAge);
printf("Age: %d\n", p.age);

Slides I stole from last year

what does this code output? 4/8
#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person create_person(int *age) {
Person p = {*age};
return p;

}

int main() {
int *myAge = malloc(sizeof(int));
*myAge = 22;
Person p = create_person(myAge);
printf("Age: %d\n", p.age);

Slides I stole from last year

what does this code output? 5/8

#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person *create_person(int age) {
return malloc(sizeof(Person));
}

int main() {
Person *p = Create_person(zz);
printf("Age: %d\n", p->age);

}

Slides I stole from last year

what does this code output? 6/8

#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person *create_person(int age) {
return calloc(1, sizeof(Person));
}

int main() {
Person *p = Create_person(zz);
printf("Age: %d\n", p->age);

}

Slides I stole from last year

what does this code output? 7/8
#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person *create_person(int age) {
Person *p = malloc(sizeof(Person));
p->age = age;
return p;

}

int main() {
Person* p = create_person(22);
free(p);
printf("Age: %d\n", p->age);

}

Slides I stole from last year

what does this code output? 8/8
#include <stdio.h>

typedef struct Person {
int age;
} Person;

Person create_person(int *age) {
Person p = {*age};
free(age);
return p;

}

int main() {
int myAge = 22;
Person p = create_person(&myAge);
printf("Age: %d\n", p.age);

}

+4GDB and Valgrind Demo 4

la/layoutsrc //user-friendly view

r/runfargs] //start program, continuing to next breakpoint / end of program
b / break <linenum/function...> <conditional> //set a breakpoint to stop at
c/ continue // continue to the next breakpoint / end of program

n/ next // go to next line
s /step // step into a function / over a line if not on a function call
f / finish // finish running the current function and return to the parent frame

p/ print <variable> // print out value of specified thing

x <variable>/<memory address> // examine a chunk of memory

bt / backtrace // print the execution stack (like exception trace)

watch <variable> // watch a memory location (break once it changes)

Typical control flow:
1. gdb <executable>
2. bmain
3. r<args>

linux terminal cheatsheet

cd <folder>-change workingdirectory
mv <src> <dest>-movefile

cp <src> <dest>-copyfile

man <cmd> - manual for acommand

pwd - tells you your current working
directory

mkdir <dirname> - make a new directory

1s - shows you the files in your current
directory

make - runs the Makefile, generally builds a
binary

touch <file> -makeablankfile

nano <file>-simple command-line text
editor

vim <file> -superior command-line text
editor

ssh <username>@<ip> - secure remote
shell

scp <username>@<ip>:~/file <dest>
- copy a file/folder over ssh

P2

Poll

How’s your status on P2?

What's P2?

I've heard of it

I’'ve cloned the starter code
and/or looked through it

I've started planning/writing
code

I’m mostly done but might still
have bugs

P2 any% speedrun

New operators!

® <=7<7>=’ >7==9!=7&&7||7&

o Be careful when handling multi-character operators (look-ahead?)

“«n»

e Aninterestingone:”
o What does this do?
o ie.

Statements vs Expressions

e Statements - complete requests (e.g. printing, assignment, return)
e Expressions - produce a value (e.g. arithmetic, logic, function call, function

definition)
Statements Expressions
print <const>
if <identifier>
while <expr= fun { <statements> }
<identifier> = <expr> <op> <expr>
else <function call> (<expr>)
return

Conditional Statements

e (f-else statements
e whileloops
e no forloops

Fun Expression

e not “func”!
o Provided test cases generally have precedence over the README in defining the spec
e Defines afunction without executing it
o Need away to come back later to run the function
e Expressionreturns auinté4_t value representing function
o Norestrictions on how this value looks - as long as it is unique, you can represents functions

however you want
o This means you can treat it as a mystery expression - you can’'t know anything about it other than

the fact that it is a value

Function Call Expression

e Not astatement - must always be used as part of an expression
o notallowed: £ (3)
o greatix = f£(3)

e What if a function doesn’t explicitly return a value?
o returnO

Scope

it = 10

f1 = fun {
print it
z = £2(1t*2) What is the output? (spaces = newline)
print it a) 10 10 10 10 10

10 15 30 31 31

f2 = fun { 10 15 31 31 31

it =it + 1

—
Q O
N N S S S

. . d 10 15 31 15 10
print 1t e 10 10 11 11 15

}

print it

z = £f1(15)

print it

Tokenization

e Tokenization: take an arbitrary string and separate it into “tokens” according to
some syntax rules
o How s this useful for our interpreter?
e Pre-Tokenization: performing the tokenization step before the interpreter
starts parsing a program
o How canyou use pre-tokenization to make an interpreter more efficient?
e Pre-tokenize once and run many times
o Really useful for loops/functions/things that are run a lot
e Why should we care?
o Ifyouwantaprize...

Enums

e VerysimpleinC: e By default, correspond to ints starting from O
and counting up (PRINT=0, IF=1, etc)

e Why could this be useful?

e Side note: what is the typedef doing here?

typedef enum Keyword {
PRINT,
1F,
ELSE,
WHILE,
FUN
} Keyword;

Fun Pointer Magic!

e Whatis afunction pointer, and how is it different from a function?
e Inthe p2 README we're told that a fun expression evaluates to an “opaque
64-bit quantity” which is used to identify the function

o Does this remind you of anything? :3
e Running a C function using a function pointer
e Isthere something like thiswe candoinfun? int main() A

void foo() { printf(“hi”); }

void(*bar)();
bar = foo;

bar();

Short Circuiting

e What s the output of this fun code?

X =1

f = fun {
X =95

}

if (1 || f()) print x

bool effects

e Whatgoodisit?
e Why would it be nice to have a state variable passed down during recursive
descent?

Assembly Review

e Whatis assembly?
o Itisthe lowest-level human-readable interface to encode a sequence of instructions

e Why should we care about assembly?
o It helps us understand what the machine is doing when we run compiled code

e What are the different types of assembly?
o Therearealot: x86[_64], ARM, RISC-V, PowerPC, and more!

e Why are there different types of assembly?

o Each corresponds to a different underlying architecture, with different abstractions and
operations

e Inthis class, we will be discussing 2 architectures: AMD64 (x86_64), and
AArché64 (ARM)

o What are some differences between these architectures?

AMD64 VS.

They both start withan A

CISC

Faster or slower per instruction?
Why do you think AMDé64 is so
popular for

laptop/desktop/server machines?
o Willit beinthe future?

AArcho64

They both end with 64

RISC

More energy efficient or less
energy efficient?

Why is AArché4 so popular for
embedded/mobile/microcontroll

er platforms?
o Willit bein the future?

Questions?

000088558558S8$S8S0000
0058888558588585885888858S0

0088888885888 SSSSSSSSSSS888SSSSo oS SS oS
o $ oo 05885555 SSSSSSSSSSSSSSSSSSSSSSSS8S8SSSSo $$ $$ So
00 $$"S 08S8SSSSSSS $SSSSSSSSSSSS SERRRISS N $8$808%0$

"$8$8$S%08 0$8888888$ $§$8$858888$ $3885888SS0 $$8$8$8S
§$888S8$ $§$8$858888$ $§$8$858888$ $385888858585858888888S
$S83888888585858888888S $$858888888SS $$835888888888S " "8S8S

1888888858585 8888585858588588558585858858855858888888 "8
888 0883858555555858555855585585555555858858888858888888 "$$So
088" $$$ $$So
$$$ 888585585858585558558555555585885858885888888" "$8888S00000888S0
038838000083838S 53883555585 855558555555585885888888888S o$$$$$$$$$$$$$$$$$
$$$$$$$$ 8888 $S88585S858588888858585888888888888S §88s"
$$$$ "3888885585858585888888588888 0S
"$8So " S88888858585888888"8S $S$$
$$So "$8" 88888 0$S$
SSSo 0$8S$8"
"8S0 03$38$%0"3%0 0$$8$
"$$8$S00 ""388508838880 0888S""
""8888S0000 "$850888888888" "
""8$38388800 $8388388S8S
" 88888S8SS8SSS
$$858888888S
$$85888888
SR

