
Welcome back
to CS429H!

Week 1

Best Ed meme of the week:

Questions on lecture content?
Or about cats?

Quiz everyone say YAY!

Poll
int fd =

open(“feedback.txt”,O_RDONLY);

How was the quiz?

A. easy

B. mostly fine

C. mostly fine, but not enough time

D. too hard, but finished mostly in

time

E. too hard and not enough time

F. too hard regardless of time

Stress
● 429H is not an easy class

○ Lots of new materials
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer of the solution
○ This is expected—we want we everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overly overwhelmed or spending more time on this class than
you think you should be, please reach out to Dr. Gheith or the TAs
○ We can help out as far as the class goes
○ We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

P1 Postmortem
● Grades will be released by next discussion (putting this here to hold us

accountable lmao)

● Correctness
○ Good job!

○ If you want us to grade a late commit, please make a regrade request

● Test cases
○ Stress tests - ok, but you don’t need to make then 200k lines…

● Code quality
○ Very good! Keep in mind that for p2 we will start checking for memory leaks

● Reports
○ Awesome!

Slides I stole from last year
what does this code output? 1/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person create_person(int age) {
 Person p = {age};
 return p;
}

int main() {
 int myAge = 22;
 Person p = create_person(myAge);
 printf("Age: %d\n", p.age);
}

Slides I stole from last year
what does this code output? 2/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person *create_person(int age) {
 Person p = {age};
 return &p;
}

int main() {
 int myAge = 22;
 Person *p = create_person(myAge);
 printf("Age: %d\n", p->age);
}

Slides I stole from last year
what does this code output? 3/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person create_person(int *age) {
 Person p = {*age};
 return p;
}

int main() {
 int myAge = 22;
 Person p = create_person(&myAge);
 printf("Age: %d\n", p.age);
}

Slides I stole from last year
what does this code output? 4/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person create_person(int *age) {
 Person p = {*age};
 return p;
}

int main() {
 int *myAge = malloc(sizeof(int));
 *myAge = 22;
 Person p = create_person(myAge);
 printf("Age: %d\n", p.age);
}

Slides I stole from last year
what does this code output? 5/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person *create_person(int age) {
 return malloc(sizeof(Person));
}

int main() {
 Person *p = create_person(22);
 printf("Age: %d\n", p->age);
}

Slides I stole from last year
what does this code output? 6/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person *create_person(int age) {
 return calloc(1, sizeof(Person));
}

int main() {
 Person *p = create_person(22);
 printf("Age: %d\n", p->age);
}

Slides I stole from last year
what does this code output? 7/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person *create_person(int age) {
 Person *p = malloc(sizeof(Person));
 p->age = age;
 return p;
}

int main() {
 Person* p = create_person(22);
 free(p);
 printf("Age: %d\n", p->age);
}

Slides I stole from last year
what does this code output? 8/8

#include <stdio.h>

typedef struct Person {
 int age;
} Person;

Person create_person(int *age) {
 Person p = {*age};
 free(age);
 return p;
}

int main() {
 int myAge = 22;
 Person p = create_person(&myAge);
 printf("Age: %d\n", p.age);
}

✨GDB and Valgrind Demo✨

gdb cheatsheet
la / layout src // user-friendly view
r / run [args] // start program, continuing to next breakpoint / end of program
b / break <linenum/function...> <conditional> // set a breakpoint to stop at
c / continue // continue to the next breakpoint / end of program
n / next // go to next line
s / step // step into a function / over a line if not on a function call
f / finish // finish running the current function and return to the parent frame
p / print <variable> // print out value of specified thing
x <variable>/<memory address> // examine a chunk of memory
bt / backtrace // print the execution stack (like exception trace)
watch <variable> // watch a memory location (break once it changes)

Typical control flow:
1. gdb <executable>
2. b main
3. r <args>

linux terminal cheatsheet
cd <folder> - change working directory

mv <src> <dest> - move file

cp <src> <dest> - copy file

man <cmd> - manual for a command

pwd - tells you your current working
directory

mkdir <dirname> - make a new directory

ls - shows you the files in your current
directory

make - runs the Makefile, generally builds a
binary

touch <file> - make a blank file

nano <file> - simple command-line text
editor

vim <file> - superior command-line text
editor

ssh <username>@<ip> - secure remote
shell

scp <username>@<ip>:~/file <dest>
- copy a file/folder over ssh

P2

Poll
How’s your status on P2?

A. What’s P2?

B. I’ve heard of it

C. I’ve cloned the starter code

and/or looked through it

D. I’ve started planning/writing

code

E. I’m mostly done but might still

have bugs

F. P2 any% speedrun

New operators!
● <=, <, >=, >, ==, !=, &&, ||, &

○ Be careful when handling multi-character operators (look-ahead?)

● An interesting one: “,”
○ What does this do?

○ i.e.

■ a = 1, 2, 3

Statements vs Expressions
● Statements - complete requests (e.g. printing, assignment, return)

● Expressions - produce a value (e.g. arithmetic, logic, function call, function

definition)

print
if
while
<identifier> =
else
return

<expr>

Statements

<const>
<identifier>
fun { <statements> }
<expr> <op> <expr>
<function call> (<expr>)

Expressions

Conditional Statements
● if-else statements

● while loops

● no for loops

Fun Expression
● not “func”!

○ Provided test cases generally have precedence over the README in defining the spec

● Defines a function without executing it
○ Need a way to come back later to run the function

● Expression returns a uint64_t value representing function
○ No restrictions on how this value looks – as long as it is unique, you can represents functions

however you want

○ This means you can treat it as a mystery expression - you can’t know anything about it other than

the fact that it is a value

Function Call Expression
● Not a statement – must always be used as part of an expression

○ not allowed: f(3)
○ great: x = f(3)

● What if a function doesn’t explicitly return a value?
○ return 0

Scope
it = 10
f1 = fun {
 print it
 z = f2(it*2)
 print it
}
f2 = fun {
 it = it + 1
 print it
}
print it
z = f1(15)
print it

What is the output? (spaces = newline)
a) 10 10 10 10 10
b) 10 15 30 31 31
c) 10 15 31 31 31
d) 10 15 31 15 10
e) 10 10 11 11 15

Tokenization
● Tokenization: take an arbitrary string and separate it into “tokens” according to

some syntax rules
○ How is this useful for our interpreter?

● Pre-Tokenization: performing the tokenization step before the interpreter

starts parsing a program
○ How can you use pre-tokenization to make an interpreter more efficient?

● Pre-tokenize once and run many times
○ Really useful for loops/functions/things that are run a lot

● Why should we care?
○ If you want a prize…

Enums
● Very simple in C:

typedef enum Keyword {

 PRINT,

 IF,

 ELSE,

 WHILE,

 FUN

} Keyword;

● By default, correspond to ints starting from 0

and counting up (PRINT=0, IF=1, etc)

● Why could this be useful?

● Side note: what is the typedef doing here?

Fun Pointer Magic!
● What is a function pointer, and how is it different from a function?

● In the p2 README we’re told that a fun expression evaluates to an “opaque

64-bit quantity” which is used to identify the function
○ Does this remind you of anything? :3

● Running a C function using a function pointer

● Is there something like this we can do in fun?

void foo() { printf(“hi”); }

int main() {

 void(*bar)();

 bar = foo;

 bar();

}

Short Circuiting
● What is the output of this fun code?

x = 1

f = fun {

 x = 5

}

if (1 || f()) print x

bool effects
● What good is it?

● Why would it be nice to have a state variable passed down during recursive

descent?

Assembly Review
● What is assembly?

○ It is the lowest-level human-readable interface to encode a sequence of instructions

● Why should we care about assembly?
○ It helps us understand what the machine is doing when we run compiled code

● What are the different types of assembly?
○ There are a lot: x86[_64], ARM, RISC-V, PowerPC, and more!

● Why are there different types of assembly?
○ Each corresponds to a different underlying architecture, with different abstractions and

operations

● In this class, we will be discussing 2 architectures: AMD64 (x86_64), and
AArch64 (ARM)
○ What are some differences between these architectures?

AMD64 vs. AArch64
● They both start with an A

● CISC

● Faster or slower per instruction?

● Why do you think AMD64 is so

popular for

laptop/desktop/server machines?
○ Will it be in the future?

● They both end with 64

● RISC

● More energy efficient or less

energy efficient?

● Why is AArch64 so popular for

embedded/mobile/microcontroll

er platforms?
○ Will it be in the future?

Questions?

 oooo$$$$$$$$$$$$oooo
 oo$$$$$$$$$$$$$$$$$$$$$$$$o
 oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
 o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
 oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
 "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
 $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
 "$$$""""$$$ "$$$
 $$$ o$$ "$$$o
 o$$" $$$ $$$o
 $$$ $$$" "$$$$$$ooooo$$$$o
 o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$
 $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
 """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
 "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
 $$$o "$$""$$$$$$"""" o$$$
 $$$$o o$$$"
 "$$$$o o$$$$$$o"$$$$o o$$$$
 "$$$$$oo ""$$$$o$$$$$o o$$$$""
 ""$$$$$oooo "$$$o$$$$$$$$$"""
 ""$$$$$$$oo $$$$$$$$$$
 """"$$$$$$$$$$$
 $$$$$$$$$$$$
 $$$$$$$$$$"
 "$$$""""

